

MATHEMATIQUES - 2nde

Année Scolaire 2023-2024

Evaluation n°9 - (Correction)

Vendredi 3 mai 2024

Exercice 1

х	-7		-2π		$-\pi$		π		2π		7
Signe de $f(x)$		+	0	_	0	+	0	_	0	+	

x	-7	0	7
Signe de $g(x)$		+ 0 +	

- **2.** Résoudre l'équation f(x) = g(x) sur I revient à chercher les abscisses des points de la courbe (C_f) tels que les ordonnées soient égales à celles des points de la courbe (C_f) . Graphiquement, on trouve, avec la précision permise du graphique, x = -0.9 et x = 0.9.
- **3.** Résoudre l'équation $f(x) \ge (x)$ sur I revient à chercher les abscisses des points de la courbe (C_f) tels que les ordonnées soient inférieures ou égales à celles des points de la courbe (C_f) . Graphiquement, on trouve, avec la précision permise du graphique, l'ensemble des valeurs de x représentées par l'intervalle $[-7; -0,9] \cup [0,9;7]$.

Exercice 2

1. Une factorisation de f(x) donne :

$$f(x) = 36x^3 - 25x$$

$$f(x) = x(36x^2 - 25)$$

$$f(x) = x(6x - 5)(6x + 5)$$

Une factorisation de f(x) donne x(6x-5)(6x+5).

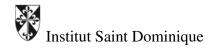
2. Résolvons l'inéquation f(x) > 0 sur \mathbb{R} :

La fonction $x \mapsto 6x - 5$ est une fonction affine dont le coefficient directeur est 6. Comme 6 > 0, la fonction est croissante et la valeur charnière s'obtient par :

$$6x - 5 = 0$$
$$6x = 5$$
$$x = \frac{5}{6}$$

La fonction $x \mapsto 6x + 5$ est une fonction affine dont le coefficient directeur est 6. Comme 6 > 0, la fonction est croissante et la valeur charnière s'obtient par :

$$6x + 5 = 0$$
$$6x = -5$$
$$x = \frac{-5}{6}$$



Le tableau de signe devient alors :

х	-∞		$-\frac{5}{6}$		0		$\frac{5}{6}$		+∞
Signe de <i>x</i>		_		_	0	+		+	
Signe de $6x - 5$		_		_	<u> </u>	_	0	+	
Signe de $6x + 5$		_	0	+		+		+	
Signe du produit		_	0	+	0	_	0	+	

A partir du tableau, les solutions de l'inéquation f(x) > 0 sont dans l'ensemble S tel que :

$$S = \left] \frac{-5}{6}; 0 \right[\cup \left] \frac{5}{6}; +\infty \right[.$$

Exercice 3

1 La détermination des ensembles de définition donne :

Pour la fonction f, on résout l'équation x + 3 = 0:

$$x + 3 = 0$$
$$x = -3$$

Pour la fonction g, la fonction g est définie sur \mathbb{R} .

On en conclue que $D_f = \mathbb{R} - \{-3\}$ et $D_g = \mathbb{R}$.

2 Résolvons l'inéquation $f(x) \ge g(x)$:

$$f(x) \ge g(x)$$

$$\frac{x^2 + 2x}{x+3} \ge x$$

$$\frac{x^2 + 2x}{x+3} - x \ge 0$$

$$\frac{x^2 + 2x}{x+3} - \frac{x(x+3)}{x+3} \ge 0$$

$$\frac{x^2 + 2x - x^2 - 3x}{x+3} \ge 0$$

$$\frac{-x}{x+3} \ge 0$$

La fonction $x \mapsto -x$ est une fonction linéaire dont le coefficient directeur est -1. Comme -1 < 0, la fonction est décroissante et la valeur charnière est 0.

La fonction $x \mapsto x + 3$ est une fonction affine dont le coefficient directeur est 1. Comme 1 > 0, la fonction est croissante et la valeur charnière s'obtient par :

$$x + 3 = 0$$
$$x = -3$$

Le tableau de signe devient alors :

x	-∞		-3		0		+∞
Signe de $-x$					0		
					V	_	
Signe de $x + 3$		_	0	1		1	
de x + 3		_	V	Т			
Signe du produit				1	0		
produit		_		+	U	_	

A partir du tableau, les solutions de l'inéquation $f(x) \ge g(x)$ sont dans l'ensemble S tel que : S = [-3;0].

Exercice 4

L'inéquation se résout de la façon suivante :

$$f(x) + g(x) \leqslant h(x)$$

$$\frac{2x - 1}{x + 3} + \frac{3x}{x - 3} \leqslant \frac{2x^2 + 3}{x^2 - 9}$$

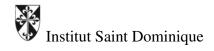
$$\frac{2x - 1}{x + 3} + \frac{3x}{x - 3} - \frac{2x^2 + 3}{x^2 - 9} \leqslant 0$$

$$\frac{(2x - 1)(x - 3)}{(x + 3)(x - 3)} + \frac{3x(x + 3)}{(x - 3)(x + 3)} - \frac{2x^2 + 3}{(x - 3)(x + 3)} \leqslant 0$$

$$\frac{2x^2 - 6x - x + 3 + 3x^2 + 9x - 2x^2 - 3}{(x - 3)(x + 3)} \leqslant 0$$

$$\frac{3x^2 + 2x}{(x - 3)(x + 3)} \leqslant 0$$

$$\frac{x(3x + 2)}{(x - 3)(x + 3)} \leqslant 0$$



La fonction $x \mapsto x$ est une fonction linéaire dont le coefficient directeur est 1. Comme 1 > 0, la fonction est croissante et la valeur charnière est 0.

La fonction $x \mapsto 3x + 2$ est une fonction linéaire dont le coefficient directeur est 3. Comme 3 > 0, la fonction est croissante et la valeur charnière s'obtient par :

$$3x + 2 = 0$$
$$3x = -2$$
$$x = \frac{-2}{3}$$

La fonction $x \mapsto x + 3$ est une fonction affine dont le coefficient directeur est 1. Comme 1 > 0, la fonction est croissante et la valeur charnière s'obtient par :

$$x + 3 = 0$$
$$x = -3$$

La fonction $x \mapsto x - 3$ est une fonction affine dont le coefficient directeur est 1. Comme 1 > 0, la fonction est croissante et la valeur charnière s'obtient par :

$$x - 3 = 0$$
$$x = 3$$

Le tableau de signe devient alors :

x	-∞		-3		$\frac{-2}{3}$		0		3		+∞	
Signe		_				_	0					
de x		_		_			V	T				
Signe de		_		_	0							
3x + 2		_		_	U	ı		ı		丁		
Signe		_	0	1		1		1		1		
de x + 3		_		Ü			T		T			
Signe		_				_		_	0			
de $x-3$		_		_		_		_	Ü	丁		
Signe du		1		_	0	1	0	_		1		
quotient		+	+		_	0	+	0	_		T	

A partir du tableau, les solutions de l'inéquation $f(x) + g(x) \le h(x)$ sont dans l'ensemble S tel que : $S = \left[-3; \frac{-2}{3} \right] \cup [0;3[$.