MATHEMATIQUES - 2nde

Année Scolaire 2023-2024

Evaluation n°9 - Rattrapage - (Correction)

Mardi 21 mai 2024

Exercice 1

1. Le tableau de signe de la fonction g donne :

Х	-2		-1		2		5
Signe de $g(x)$		_	0	+	0	_	

- **2.** Résoudre l'équation f(x) = g(x) sur I revient à chercher les abscisses des points de la courbe (C_f) tels que les ordonnées soient égales à celles des points de la courbe (C_f) . Graphiquement, on trouve, avec la précision permise du graphique, x = -1, 12 et x = 2, 12.
- **3.** Résoudre l'équation $f(x) \le (x)$ sur I revient à chercher les abscisses des points de la courbe (C_f) tels que les ordonnées soient inférieures ou égales à celles des points de la courbe (C_f) . Graphiquement, on trouve, avec la précision permise du graphique, l'ensemble des valeurs de x représentées par l'intervalle [-1,12;12;5].

Exercice 2

1. Une factorisation de f(x) donne :

$$f(x) = (x-1)^2 - (3x+7)(x-1)$$

$$f(x) = (x-1)[(x-1) - (3x+7)]$$

$$f(x) = (x-1)(x-1-3x-7)$$

$$f(x) = (x-1)(-2x-8)$$

Une factorisation de f(x) donne f(x) = (x-1)(-2x-8).

2. Résolvons l'inéquation f(x) > 0 sur \mathbb{R} :

La fonction $x \mapsto x - 1$ est une fonction affine dont le coefficient directeur est 1. Comme 1 > 0, la fonction est croissante et la valeur charnière s'obtient par :

$$x - 1 = 0$$
$$x = 1$$

La fonction $x \mapsto -2x - 8$ est une fonction affine dont le coefficient directeur est -2. Comme -2 < 0, la fonction est décroissante et la valeur charnière s'obtient par :

$$-2x - 8 = 0$$
$$-2x = 8$$
$$x = -4$$

Le tableau de signe devient alors :

x	-∞		-4		1		+∞
Signe de $x - 1$		_		_	0		
						T	
Signe de $-2x-8$		1	0				
-2x - 8		+	U	_		_	
Signe du			0	1	0		
produit		_	U	+	U	_	

A partir du tableau, les solutions de l'inéquation f(x) > 0 sont dans l'ensemble S tel que S =]-4;1[.

Exercice 3

1 La résolution de l'équation f(x) = g(x) donne :

$$f(x) = g(x)$$

$$\frac{5x - x^2}{1 + x} = 1 - x$$

$$\frac{5x - x^2}{1 + x} - 1 + x = 0$$

$$\frac{5x - x^2}{1 + x} + \frac{(-1 + x)(1 + x)}{1 + x} = 0$$

$$\frac{5x - x^2}{1 + x} + \frac{x^2 - 1}{1 + x} = 0$$

$$\frac{5x - 1}{1 + x} = 0$$

Un quotient est nul si son numérateur est nul et si son dénominateur est non nul. On résout alors :

$$f(x) = g(x)$$
D'une part $5x - 1 = 0$ et d'autre part $1 + x \neq 0$

$$5x = 1$$

$$x \neq -1$$

$$x = \frac{1}{5}$$

La solution de l'équation est donc $x = \frac{1}{5}$ et la valeur -1 est une valeur interdite.

2 Résolvons l'inéquation $f(x) \ge g(x)$:

$$f(x) \geqslant g(x)$$

 $\frac{5x-1}{1+x} \geqslant 0$ (On reprend le résultat précédent)

La fonction $x \mapsto 5x - 1$ est une fonction linéaire dont le coefficient directeur est 5. Comme 5 > 0, la fonction est croissante et la valeur charnière s'obtient par :

$$5x - 1 = 0$$
$$5x = 1$$
$$x = \frac{1}{5}$$

Le tableau de signe devient alors :

La fonction $x \mapsto x + 1$ est une fonction affine dont le coefficient directeur est 1. Comme 1 > 0, la fonction est croissante et la valeur charnière s'obtient par :

$$x + 1 = 0$$
$$x = -1$$

x	-∞		-1		$\frac{1}{5}$		+∞
Signe de $5x - 1$		_		_	0		
					Ü	Τ	
Signe de $1+x$		_	0				
de 1 + x		_	V				
Signe du produit		1			0	1	
produit		T			<u> </u>	Г	

A partir du tableau, les solutions de l'inéquation $f(x) \ge g(x)$ sont dans l'ensemble S tel que :

$$S =]-\infty; -1[\cup \left\lceil \frac{1}{5}; +\infty \right\rceil.$$